江西省公务员考试数学运算每日练习(2016.7.23)
1.某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门,假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至少为多少名:
A.10
B.11
C.12
D.13
2.一个立方体随意翻动,每次翻动朝上一面的颜色与翻动前都不同,那么这个立方体的颜色至少有几种:
A.3
B.4
C.5
D.6
3.有120名职工投票,从甲、乙、丙三人中选举一人为劳模,每人只能投一次,且只能选一个人,得票最多的人当选。统计票数的过程发现,在前81张票中,甲得21票,乙得25票,丙得35票。在余下的选票中,丙至少再得几张选票就一定能当选:
A.15
B.18
C.21
D.31
参考答案与解析:
1.B【解析】要使行政部门少,则其他部门应尽量多,即所有部门尽可能平均分,65÷7=9余2,即平均分配给7个不同部门还剩余2名毕业生,已知行政部门毕业生最多,所以只需将剩余的2名毕业生分配给行政部门即可(如果只分配1名,那么其他部门也会出现不少于10人的情况),可得9+2=11名。
2.A【解析】立方体 6 个面中,每次翻动都会出现相邻的任意面,所以相邻的不能用同一 种颜色,那么选 3 种颜色都在相对的面上填涂即可。也可以运用图形推理中的“相对面关 系法”得知,每次翻动都不能翻到对立面,因此对立面颜色可以相同。立方体有三组对立面,因此可以有三种颜色。
3.A【解析】乙和丙的票数较接近,乙对丙的威胁最大,考虑最坏的情况,在剩余的39张票中,只在乙丙中分配。先分给乙10张,此时乙丙都得35票,还剩29票,如果乙和丙均再得14张选票,二者票数相同,丙仍然不能保证当选,于是丙需要再得1张选票,即在最后29票中只要分15票给丙,就可以保证丙必然当选。
