江西省公务员考试数学运算每日练习(2016.7.2)
1.某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训:
A.8
B.10
C.12
D.15
2.某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人。问今年男员工有多少人:
A.329
B.350
C.371
D.504
3.一个立方体随意翻动,每次翻动朝上一面的颜色与翻动前都不同,那么这个立方体的颜色至少有几种:
A.3
B.4
C.5
D.6
参考答案与解析:
1.D【解析】乙教室可坐9人,可知乙培训过的人数含有因子3,而总的培训人数1290也含有因子3,因此甲教室培训过的人数也必然含有3因子。而甲教室可坐50人,因此要使甲教室培训过的人数也含有3因子,则其举办次数必然含有3因子,因此只有C、D符合。将C选项代入,可知此时乙教室举办过15次培训,其总人数的尾数为5,而甲教室培训的总人数尾数总是为0,因此甲、乙教室的培训人数尾数为5,不符合要求。
2.A【解析】本题可利用整除特性。由题意知,今年男员工数是去年的94%=47/50,故今年男员工数可被47整除,根据选项,只有A项符合,所以选择A项。
3.A【解析】立方体 6 个面中,每次翻动都会出现相邻的任意面,所以相邻的不能用同一 种颜色,那么选 3 种颜色都在相对的面上填涂即可。也可以运用图形推理中的“相对面关 系法”得知,每次翻动都不能翻到对立面,因此对立面颜色可以相同。立方体有三组对立面,因此可以有三种颜色。
